mmpSearch/scripts/handler/main.py

318 lines
11 KiB
Python

# main.py
import os
import json
import shutil
import subprocess
import multiprocessing
import logging
import time
import platform
import sys # Adicionado para sair do script se faltar dependência
from datetime import datetime
# Importando seus módulos
from generate_manifest import generate_manifests
from file_parser import parse_mmp_file
from file_saver import save_to_json, save_to_yaml
from dependency_checker import check_dependencies
from utils import (
create_folders_if_not_exist,
BASE_PATH,
DATA_FOLDER,
METADATA_FOLDER,
WAV_FOLDER,
MMPZ_FOLDER,
MMP_FOLDER,
)
# Caminho para os Logs
CURRENT_DIR = os.path.dirname(os.path.abspath(__file__))
LOG_FOLDER = os.path.join(CURRENT_DIR, "logs")
def check_system_dependencies():
"""Verifica se as ferramentas necessárias estão instaladas antes de iniciar."""
required_tools = ["lmms"]
missing = []
for tool in required_tools:
if shutil.which(tool) is None:
missing.append(tool)
if missing:
logging.critical(f"FERRAMENTAS FALTANDO: {', '.join(missing)}")
logging.critical("Por favor instale: sudo apt-get install " + " ".join(missing))
sys.exit(1) # Encerra o script imediatamente
def get_linux_mem_info():
"""Lê /proc/meminfo para obter memória total de forma nativa no Linux."""
try:
with open("/proc/meminfo", "r") as f:
for line in f:
if "MemTotal" in line:
kb_value = int(line.split()[1])
return kb_value / (1024 * 1024)
except (IOError, ValueError): # Melhoria: Captura apenas erros de arquivo/valor
return 0
except Exception as e:
logging.warning(f"Erro ao ler memória: {e}")
return 0
def get_cpu_model_name():
"""Lê /proc/cpuinfo para pegar o nome real do processador."""
try:
with open("/proc/cpuinfo", "r") as f:
for line in f:
if "model name" in line:
return line.split(":")[1].strip()
except Exception:
return platform.processor()
def log_system_info():
# Apenas certifique-se de manter a indentação correta
try:
logging.info("=" * 30)
logging.info("AUDITORIA DE AMBIENTE (HARDWARE)")
logging.info("=" * 30)
uname = platform.uname()
logging.info(f"Sistema: {uname.system} {uname.release}")
logging.info(f"Node: {uname.node}")
cpu_model = get_cpu_model_name()
cores_logical = multiprocessing.cpu_count()
mem_total_gb = get_linux_mem_info()
logging.info(f"CPU Modelo: {cpu_model}")
logging.info(f"Núcleos: {cores_logical}")
logging.info(f"Memória Total: {mem_total_gb:.2f} GB")
total, used, free = shutil.disk_usage(".")
logging.info(f"Disco (Livre): {free // (2**30)} GB")
logging.info("=" * 30)
except Exception as e:
logging.warning(f"Falha ao coletar info do sistema: {e}")
def setup_logger():
os.makedirs(LOG_FOLDER, exist_ok=True)
timestamp = datetime.now().strftime("%Y-%m-%d_%H-%M-%S")
log_filename = os.path.join(LOG_FOLDER, f"execucao_{timestamp}.log")
logger = logging.getLogger()
logger.setLevel(logging.INFO)
formatter = logging.Formatter(
"%(asctime)s [%(levelname)s] %(message)s", datefmt="%d/%m/%Y %H:%M:%S"
)
file_handler = logging.FileHandler(log_filename, encoding="utf-8")
file_handler.setFormatter(formatter)
logger.addHandler(file_handler)
console_handler = logging.StreamHandler()
console_handler.setFormatter(formatter)
logger.addHandler(console_handler)
return logger, log_filename
def process_single_file(file_name):
"""Worker robusto com melhor tratamento de Subprocesso."""
file_path = os.path.join(MMP_FOLDER, file_name)
pid = os.getpid()
result = {"success": False, "file": file_name, "data": None, "error": None}
try:
logging.info(f"[PID {pid}] Processando: {file_name}")
# 1. Tratamento MMPZ
if file_name.endswith(".mmpz"):
destination_path = os.path.join(MMPZ_FOLDER, file_name)
# Move arquivo se necessário
if not os.path.exists(destination_path):
shutil.move(file_path, destination_path)
elif os.path.exists(file_path):
os.remove(file_path)
mmp_name = os.path.splitext(file_name)[0] + ".mmp"
output_mmp_path = os.path.join(MMP_FOLDER, mmp_name)
# Usa caminho absoluto para evitar erros do LMMS
abs_dest = os.path.abspath(destination_path)
abs_mmp_out = os.path.abspath(output_mmp_path)
# Lista ao invés de string (Sem shell=True)
# Comando dump: LMMS escreve no stdout, então precisamos capturar
dump_cmd = ["lmms", "--dump", abs_dest]
try:
with open(abs_mmp_out, "w") as outfile:
subprocess.run(
dump_cmd,
stdout=outfile, # Redireciona saida direto pro arquivo
stderr=subprocess.PIPE, # Captura erros
check=True,
env={"QT_QPA_PLATFORM": "offscreen", **os.environ},
)
logging.info(f"[PID {pid}] Dump MMP criado.")
except subprocess.CalledProcessError as e:
result["error"] = f"Erro no dump MMP: {e.stderr.decode('utf-8')}"
logging.error(f"[PID {pid}] {result['error']}")
return result
# Conversão WAV
wav_name = os.path.splitext(file_name)[0] + ".wav"
abs_wav_out = os.path.abspath(os.path.join(WAV_FOLDER, wav_name))
# Comando em lista: Mais seguro e organizado
wav_cmd = [
"lmms",
"-r",
abs_dest,
"-o",
abs_wav_out,
"-f",
"wav",
]
try:
subprocess.run(wav_cmd, check=True, capture_output=True, text=True)
# Log em vez de Print
logging.info(f"[PID {pid}] Áudio WAV gerado com sucesso.")
except subprocess.CalledProcessError as e:
# Não paramos o fluxo por erro no WAV, mas logamos como erro
logging.warning(f"[PID {pid}] Falha no WAV: {e.stderr}")
# Define o caminho para o parser
file_to_parse = output_mmp_path
elif file_name.endswith(".mmp"):
file_to_parse = file_path
# 2. Parsing e Salvamento
if os.path.exists(file_to_parse):
mmp_data = parse_mmp_file(file_to_parse)
if mmp_data:
base_name = os.path.splitext(file_name)[0]
save_to_json(
mmp_data, os.path.join(METADATA_FOLDER, base_name + ".json")
)
save_to_yaml(mmp_data, os.path.join(DATA_FOLDER, base_name + ".yml"))
result["success"] = True
result["data"] = mmp_data
else:
result["error"] = "Dados vazios após parsing."
else:
result["error"] = "Arquivo MMP não encontrado para parsing."
except Exception as e:
result["error"] = f"Erro geral: {str(e)}"
logging.error(f"[PID {pid}] {file_name}: {result['error']}")
return result
def main_parallel():
logger, log_file_path = setup_logger()
start_time = time.time()
# MELHORIA 4: Fail Fast
check_system_dependencies()
log_system_info()
logging.info("=== Iniciando Pipeline Otimizado ===")
create_folders_if_not_exist([MMPZ_FOLDER, WAV_FOLDER, METADATA_FOLDER, DATA_FOLDER])
if not os.path.exists(MMP_FOLDER):
logging.critical(f"Pasta {MMP_FOLDER} não encontrada.")
return
all_files = [f for f in os.listdir(MMP_FOLDER) if f.endswith((".mmp", ".mmpz"))]
if not all_files:
logging.warning("Nenhum arquivo encontrado.")
return
num_cores = multiprocessing.cpu_count()
logging.info(f"Processando {len(all_files)} arquivos com {num_cores} workers.")
with multiprocessing.Pool(processes=num_cores) as pool:
results = pool.map(process_single_file, all_files)
# Processamento de resultados (igual ao seu)
successful_data = [r["data"] for r in results if r["success"]]
failed_files = [r for r in results if not r["success"]]
if successful_data:
save_to_json(successful_data, os.path.join(METADATA_FOLDER, "all.json"))
save_to_yaml(successful_data, os.path.join(DATA_FOLDER, "all.yml"))
# Geração de Manifestos
try:
manifest_report = generate_manifests(BASE_PATH)
except Exception as e:
manifest_report = {"generated": [], "failed": [str(e)]}
# Relatório Final
duration = time.time() - start_time
logging.info("=" * 60)
logging.info(
f"FIM - Tempo: {duration:.2f}s | Sucessos: {len(successful_data)} | Falhas: {len(failed_files)}"
)
if failed_files:
logging.info("--- Detalhe das Falhas ---")
for f in failed_files:
logging.error(f"{f['file']}: {f['error']}")
# Verificação de Dependências (Projetos)
try:
check_dependencies(
os.path.join(METADATA_FOLDER, "all.json"),
os.path.join(METADATA_FOLDER, "samples-manifest.json"),
os.path.join(METADATA_FOLDER, "dependency_report.json"),
)
except Exception:
pass # Erro já logado na função ou irrelevante se arquivos não existirem
def rebuild_indexes():
"""
Função auxiliar para regerar all.json e all.yml baseada nos arquivos processados.
Pode ser chamada pela API após um upload.
"""
logging.info("Regerando índices globais (all.json / all.yml)...")
# Lista todos os JSONs individuais na pasta metadata (exceto os manifestos e o all.json)
all_data = []
ignored_files = [
"all.json",
"samples-manifest.json",
"mmp-manifest.json",
"dependency_report.json",
]
if os.path.exists(METADATA_FOLDER):
for f in os.listdir(METADATA_FOLDER):
if f.endswith(".json") and f not in ignored_files:
try:
with open(
os.path.join(METADATA_FOLDER, f), "r", encoding="utf-8"
) as json_file:
data = json.load(
json_file
) # Precisa importar json no topo se não tiver
all_data.append(data)
except Exception as e:
logging.error(f"Erro ao ler {f} para índice global: {e}")
if all_data:
save_to_json(all_data, os.path.join(METADATA_FOLDER, "all.json"))
save_to_yaml(all_data, os.path.join(DATA_FOLDER, "all.yml"))
logging.info("Índices globais atualizados com sucesso.")
return len(all_data)
if __name__ == "__main__":
main_parallel()