512 lines
16 KiB
Python
Executable File
512 lines
16 KiB
Python
Executable File
# main.py
|
|
|
|
import os
|
|
import shutil
|
|
import subprocess
|
|
import multiprocessing
|
|
import logging
|
|
import time
|
|
import platform
|
|
import sys
|
|
import re
|
|
import unicodedata
|
|
import csv
|
|
import psutil
|
|
from datetime import datetime, timedelta
|
|
|
|
# Importando seus módulos locais
|
|
from generate_manifest import generate_manifests
|
|
|
|
# from src_instruments import find_audio_files
|
|
from file_parser import parse_mmp_file
|
|
from file_saver import save_to_json, save_to_yaml
|
|
from dependency_checker import check_dependencies
|
|
from utils import (
|
|
create_folders_if_not_exist,
|
|
DATA_FOLDER,
|
|
METADATA_FOLDER,
|
|
WAV_FOLDER,
|
|
MMPZ_FOLDER,
|
|
MMP_FOLDER,
|
|
SRC_MMPSEARCH,
|
|
LOG_FOLDER,
|
|
SAIDA_ANALISES,
|
|
)
|
|
|
|
# === CONFIGURAÇÕES DE SEGURANÇA E LOTES ===
|
|
TIMEOUT_RENDER_SECONDS = 300 # 5 minutos máximo por arquivo
|
|
MIN_RAM_FREE_MB = 500 # Mínimo de RAM livre para iniciar worker
|
|
BATCH_SIZE = 250 # Tamanho do lote para o YAML
|
|
LOTES_FOLDER = os.path.join(SRC_MMPSEARCH, "lotes_yaml") # Pasta dos lotes
|
|
LIMIT_FILES = 1000 # <--- 0 = PROCESSA TUDO | >0 = LIMITA A QUANTIDADE (EX: 50)
|
|
|
|
# === VARIÁVEL GLOBAL PARA O WORKER (CORREÇÃO MULTIPROCESSING) ===
|
|
# Necessário para evitar erro de pickle ao passar Lock via argumentos
|
|
global_counter = None
|
|
|
|
|
|
def init_worker(counter):
|
|
"""Inicializa a variável global dentro de cada processo worker"""
|
|
global global_counter
|
|
global_counter = counter
|
|
|
|
|
|
# === Função de Sanitização (Slugify) ===
|
|
def slugify(value):
|
|
"""
|
|
Normaliza a string: remove acentos, converte para minúsculas,
|
|
remove caracteres não alfanuméricos e substitui espaços por hifens.
|
|
"""
|
|
value = str(value)
|
|
value = (
|
|
unicodedata.normalize("NFKD", value).encode("ascii", "ignore").decode("ascii")
|
|
)
|
|
value = value.lower()
|
|
value = re.sub(r"[^\w\s-]", "", value)
|
|
value = re.sub(r"[-\s_]+", "-", value)
|
|
return value.strip("-_")
|
|
|
|
|
|
def check_system_dependencies():
|
|
"""Verifica se as ferramentas necessárias estão instaladas."""
|
|
required_tools = ["lmms"]
|
|
missing = []
|
|
for tool in required_tools:
|
|
if shutil.which(tool) is None:
|
|
missing.append(tool)
|
|
|
|
if missing:
|
|
logging.critical(f"FERRAMENTAS FALTANDO: {', '.join(missing)}")
|
|
logging.critical("Por favor instale: sudo apt-get install " + " ".join(missing))
|
|
sys.exit(1)
|
|
|
|
|
|
def get_cpu_safe_count():
|
|
"""Retorna contagem de CPU menos 1 para não travar o SO."""
|
|
try:
|
|
count = multiprocessing.cpu_count()
|
|
return max(1, count - 1)
|
|
except:
|
|
return 1
|
|
|
|
|
|
# --- Funções de Info de Sistema ---
|
|
def get_linux_mem_info():
|
|
try:
|
|
with open("/proc/meminfo", "r") as f:
|
|
for line in f:
|
|
if "MemTotal" in line:
|
|
kb_value = int(line.split()[1])
|
|
return kb_value / (1024 * 1024)
|
|
except (IOError, ValueError):
|
|
return 0
|
|
except Exception as e:
|
|
logging.warning(f"Erro ao ler memória: {e}")
|
|
return 0
|
|
|
|
|
|
def get_cpu_model_name():
|
|
try:
|
|
with open("/proc/cpuinfo", "r") as f:
|
|
for line in f:
|
|
if "model name" in line:
|
|
return line.split(":")[1].strip()
|
|
except Exception:
|
|
return platform.processor()
|
|
|
|
|
|
def log_system_info():
|
|
try:
|
|
logging.info("=" * 30)
|
|
logging.info("AUDITORIA DE AMBIENTE (HARDWARE)")
|
|
logging.info("=" * 30)
|
|
uname = platform.uname()
|
|
logging.info(f"Sistema: {uname.system} {uname.release}")
|
|
logging.info(f"Node: {uname.node}")
|
|
cpu_model = get_cpu_model_name()
|
|
cores_logical = multiprocessing.cpu_count()
|
|
safe_cores = get_cpu_safe_count()
|
|
mem_total_gb = get_linux_mem_info()
|
|
logging.info(f"CPU Modelo: {cpu_model}")
|
|
logging.info(
|
|
f"Núcleos (Total): {cores_logical} | Workers Seguros: {safe_cores}"
|
|
)
|
|
logging.info(f"Memória Total: {mem_total_gb:.2f} GB")
|
|
total, used, free = shutil.disk_usage(".")
|
|
logging.info(f"Disco (Livre): {free // (2**30)} GB")
|
|
logging.info("=" * 30)
|
|
except Exception as e:
|
|
logging.warning(f"Falha ao coletar info do sistema: {e}")
|
|
|
|
|
|
def setup_logger():
|
|
os.makedirs(LOG_FOLDER, exist_ok=True)
|
|
timestamp = datetime.now().strftime("%Y-%m-%d_%H-%M-%S")
|
|
log_filename = os.path.join(LOG_FOLDER, f"execucao_{timestamp}.log")
|
|
logger = logging.getLogger()
|
|
logger.setLevel(logging.INFO)
|
|
formatter = logging.Formatter(
|
|
"%(asctime)s [%(levelname)s] %(message)s", datefmt="%d/%m/%Y %H:%M:%S"
|
|
)
|
|
file_handler = logging.FileHandler(log_filename, encoding="utf-8")
|
|
file_handler.setFormatter(formatter)
|
|
logger.addHandler(file_handler)
|
|
console_handler = logging.StreamHandler()
|
|
console_handler.setFormatter(formatter)
|
|
logger.addHandler(console_handler)
|
|
return logger, log_filename
|
|
|
|
|
|
def process_single_file(args):
|
|
"""
|
|
Worker robusto com CONTADOR COMPARTILHADO (THREAD-SAFE).
|
|
"""
|
|
# Desempacota os argumentos (O CONTADOR NÃO VEM MAIS AQUI)
|
|
file_name, clean_slug, total_files = args
|
|
|
|
file_path = os.path.join(MMP_FOLDER, file_name)
|
|
pid = os.getpid()
|
|
|
|
# === Lógica do Contador (Acessando via Global) ===
|
|
# O global_counter foi injetado pelo init_worker
|
|
global global_counter
|
|
current_idx = 0
|
|
|
|
if global_counter:
|
|
with global_counter.get_lock():
|
|
global_counter.value += 1
|
|
current_idx = global_counter.value
|
|
|
|
remaining = total_files - current_idx
|
|
|
|
# Log com status de progresso
|
|
logging.info(
|
|
f"[PID {pid}] [Progresso: {current_idx}/{total_files} | Faltam: {remaining}] Iniciando: {file_name}"
|
|
)
|
|
|
|
# Métricas para Auditoria
|
|
start_time = time.time()
|
|
ram_usage_mb = 0.0
|
|
|
|
result = {
|
|
"success": False,
|
|
"file": file_name,
|
|
"slug": clean_slug,
|
|
"data": None,
|
|
"error": None,
|
|
"duration_s": 0.0,
|
|
"ram_mb": 0.0,
|
|
"file_size_mb": 0.0,
|
|
}
|
|
|
|
try:
|
|
# Checagem de Tamanho
|
|
if os.path.exists(file_path):
|
|
result["file_size_mb"] = os.path.getsize(file_path) / (1024 * 1024)
|
|
|
|
# Checagem de Segurança de RAM
|
|
mem = psutil.virtual_memory()
|
|
if (mem.available / (1024 * 1024)) < MIN_RAM_FREE_MB:
|
|
result["error"] = "RAM Insuficiente para iniciar worker"
|
|
logging.warning(f"[PID {pid}] Pulei {file_name}: RAM Crítica")
|
|
return result
|
|
|
|
original_base_name = os.path.splitext(file_name)[0]
|
|
wav_name = clean_slug + ".wav"
|
|
json_name = clean_slug + ".json"
|
|
yml_name = clean_slug + ".yml"
|
|
|
|
target_mmp_path = ""
|
|
|
|
# 1. Tratamento e Extração
|
|
if file_name.endswith(".mmpz"):
|
|
destination_path = os.path.join(MMPZ_FOLDER, file_name)
|
|
|
|
if not os.path.exists(destination_path):
|
|
shutil.move(file_path, destination_path)
|
|
elif os.path.exists(file_path):
|
|
os.remove(file_path)
|
|
|
|
mmp_temp_name = clean_slug + ".mmp"
|
|
output_mmp_path = os.path.join(MMP_FOLDER, mmp_temp_name)
|
|
abs_dest = os.path.abspath(destination_path)
|
|
abs_mmp_out = os.path.abspath(output_mmp_path)
|
|
|
|
with open(abs_mmp_out, "w") as outfile:
|
|
subprocess.run(
|
|
["lmms", "--dump", abs_dest],
|
|
stdout=outfile,
|
|
stderr=subprocess.PIPE,
|
|
check=True,
|
|
timeout=60,
|
|
env={"QT_QPA_PLATFORM": "offscreen", **os.environ},
|
|
)
|
|
target_mmp_path = output_mmp_path
|
|
|
|
elif file_name.endswith(".mmp"):
|
|
target_mmp_path = file_path
|
|
|
|
# 2. GERAÇÃO DE ÁUDIO
|
|
if os.path.exists(target_mmp_path):
|
|
abs_target_mmp = os.path.abspath(target_mmp_path)
|
|
abs_wav_out = os.path.abspath(os.path.join(WAV_FOLDER, wav_name))
|
|
|
|
render_process = subprocess.run(
|
|
["lmms", "-r", abs_target_mmp, "-o", abs_wav_out, "-f", "wav"],
|
|
check=False,
|
|
capture_output=True,
|
|
text=True,
|
|
timeout=TIMEOUT_RENDER_SECONDS,
|
|
env={"QT_QPA_PLATFORM": "offscreen", **os.environ},
|
|
)
|
|
|
|
if render_process.returncode != 0:
|
|
err_msg = (
|
|
render_process.stderr
|
|
if render_process.stderr
|
|
else "Erro desconhecido"
|
|
)
|
|
if render_process.returncode == -11:
|
|
err_msg = f"LMMS CRASH (SIGSEGV): {err_msg}"
|
|
|
|
raise subprocess.CalledProcessError(
|
|
render_process.returncode,
|
|
"lmms render",
|
|
output=render_process.stdout,
|
|
stderr=err_msg,
|
|
)
|
|
|
|
logging.info(f"[PID {pid}] Áudio WAV gerado: {wav_name}")
|
|
else:
|
|
raise FileNotFoundError(
|
|
"Arquivo MMP alvo não encontrado para renderização."
|
|
)
|
|
|
|
# 3. Parsing e Salvamento INDIVIDUAL
|
|
if os.path.exists(target_mmp_path):
|
|
mmp_data = parse_mmp_file(target_mmp_path)
|
|
|
|
if mmp_data:
|
|
mmp_data["file"] = clean_slug
|
|
mmp_data["original_title"] = original_base_name
|
|
|
|
# Salva metadados individuais
|
|
save_to_json(mmp_data, os.path.join(METADATA_FOLDER, json_name))
|
|
save_to_yaml(mmp_data, os.path.join(DATA_FOLDER, yml_name))
|
|
|
|
result["success"] = True
|
|
result["data"] = mmp_data
|
|
else:
|
|
result["error"] = "Dados vazios após parsing."
|
|
else:
|
|
result["error"] = "Arquivo MMP não encontrado para parsing."
|
|
|
|
try:
|
|
process = psutil.Process(pid)
|
|
ram_usage_mb = process.memory_info().rss / (1024 * 1024)
|
|
except:
|
|
ram_usage_mb = 0.0
|
|
|
|
except subprocess.TimeoutExpired:
|
|
result["error"] = f"Timeout ({TIMEOUT_RENDER_SECONDS}s) excedido."
|
|
logging.error(f"[PID {pid}] TIMEOUT em {file_name}")
|
|
|
|
except subprocess.CalledProcessError as e:
|
|
if isinstance(e.stderr, bytes):
|
|
err_msg = e.stderr.decode("utf-8", errors="ignore")
|
|
else:
|
|
err_msg = str(e.stderr) if e.stderr else str(e)
|
|
|
|
result["error"] = f"Erro LMMS (Code {e.returncode}): {err_msg}"
|
|
logging.error(f"[PID {pid}] Falha LMMS: {result['error']}")
|
|
|
|
except Exception as e:
|
|
result["error"] = f"Erro geral: {str(e)}"
|
|
logging.error(f"[PID {pid}] {file_name}: {result['error']}")
|
|
|
|
result["duration_s"] = time.time() - start_time
|
|
result["ram_mb"] = ram_usage_mb
|
|
|
|
return result
|
|
|
|
|
|
def main_parallel():
|
|
logger, log_file_path = setup_logger()
|
|
start_time_global = time.time()
|
|
|
|
audit_csv_path = os.path.join(SAIDA_ANALISES, "audit_pipeline.csv")
|
|
|
|
check_system_dependencies()
|
|
log_system_info()
|
|
|
|
# Cria pastas (incluindo a de Lotes)
|
|
create_folders_if_not_exist(
|
|
[MMPZ_FOLDER, WAV_FOLDER, METADATA_FOLDER, DATA_FOLDER, LOTES_FOLDER]
|
|
)
|
|
|
|
logging.info(
|
|
"=== Iniciando Pipeline Otimizado (Multi-Batch + Paralelo + Contador) ==="
|
|
)
|
|
|
|
if not os.path.exists(MMP_FOLDER):
|
|
logging.critical(f"Pasta {MMP_FOLDER} não encontrada.")
|
|
return
|
|
|
|
all_files_raw = [f for f in os.listdir(MMP_FOLDER) if f.endswith((".mmp", ".mmpz"))]
|
|
|
|
if not all_files_raw:
|
|
logging.warning("Nenhum arquivo encontrado.")
|
|
return
|
|
|
|
# === APLICAÇÃO DO LIMITE DE ARQUIVOS (ALTERAÇÃO AQUI) ===
|
|
if LIMIT_FILES and LIMIT_FILES > 0:
|
|
logging.info(
|
|
f"MODO LIMITADO: Processando apenas os primeiros {LIMIT_FILES} arquivos."
|
|
)
|
|
all_files_raw = all_files_raw[:LIMIT_FILES]
|
|
|
|
total_files = len(all_files_raw)
|
|
logging.info(f"Total de arquivos a processar: {total_files}")
|
|
|
|
# === CONFIGURAÇÃO DO CONTADOR COMPARTILHADO ===
|
|
# Usamos multiprocessing.Value diretamente (Shared Memory)
|
|
shared_counter = multiprocessing.Value("i", 0)
|
|
|
|
# === PRÉ-PROCESSAMENTO DOS SLUGS ===
|
|
tasks = []
|
|
invalid_count = 0
|
|
|
|
logging.info("Preparando tarefas...")
|
|
|
|
for file_name in all_files_raw:
|
|
original_base = os.path.splitext(file_name)[0]
|
|
slug = slugify(original_base)
|
|
|
|
if not slug:
|
|
invalid_count += 1
|
|
slug = f"titulo-incorreto-{invalid_count}"
|
|
logging.warning(
|
|
f"Nome inválido detectado: '{file_name}'. Renomeando para '{slug}'"
|
|
)
|
|
|
|
# Passamos APENAS os dados estáticos. O contador vai pelo initializer.
|
|
tasks.append((file_name, slug, total_files))
|
|
|
|
# === EXECUÇÃO PARALELA ===
|
|
num_cores = get_cpu_safe_count()
|
|
logging.info(f"Processando com {num_cores} workers (Safe Mode).")
|
|
|
|
with open(audit_csv_path, "w", newline="", encoding="utf-8") as f:
|
|
writer = csv.writer(f)
|
|
writer.writerow(
|
|
[
|
|
"Timestamp",
|
|
"Arquivo_Original",
|
|
"Slug",
|
|
"Tamanho_MB",
|
|
"Duracao_Sec",
|
|
"RAM_Worker_MB",
|
|
"Status",
|
|
"Erro",
|
|
]
|
|
)
|
|
|
|
successful_data = []
|
|
failed_files = []
|
|
|
|
# === O POOL AGORA USA INITIALIZER ===
|
|
# Isso injeta o shared_counter em cada worker de forma segura antes das tarefas começarem
|
|
with multiprocessing.Pool(
|
|
processes=num_cores, initializer=init_worker, initargs=(shared_counter,)
|
|
) as pool:
|
|
results = pool.map(process_single_file, tasks)
|
|
|
|
# Coleta de resultados
|
|
with open(audit_csv_path, "a", newline="", encoding="utf-8") as f:
|
|
writer = csv.writer(f)
|
|
|
|
for res in results:
|
|
ts = datetime.now().strftime("%H:%M:%S")
|
|
status = "SUCESSO" if res["success"] else "FALHA"
|
|
|
|
writer.writerow(
|
|
[
|
|
ts,
|
|
res["file"],
|
|
res["slug"],
|
|
f"{res['file_size_mb']:.2f}",
|
|
f"{res['duration_s']:.2f}",
|
|
f"{res['ram_mb']:.2f}",
|
|
status,
|
|
res["error"] or "",
|
|
]
|
|
)
|
|
|
|
if res["success"]:
|
|
successful_data.append(res["data"])
|
|
else:
|
|
failed_files.append(res)
|
|
|
|
# === SALVAMENTO EM LOTES (BATCHING) ===
|
|
if successful_data:
|
|
logging.info(f"Total processado com sucesso: {len(successful_data)}")
|
|
logging.info(f"Iniciando gravação em lotes (Batch Size: {BATCH_SIZE})...")
|
|
|
|
# 1. Salvar JSON Completo
|
|
logging.info("Salvando all.json completo...")
|
|
save_to_json(successful_data, os.path.join(METADATA_FOLDER, "all.json"))
|
|
|
|
# --- ADIÇÃO: Salvar YAML Completo (all.yml) ---
|
|
logging.info("Salvando all.yml completo...")
|
|
save_to_yaml(successful_data, os.path.join(DATA_FOLDER, "all.yml"))
|
|
# ----------------------------------------------
|
|
|
|
# 2. Salvar YAML em Fatias (Para evitar memory overflow)
|
|
total_items = len(successful_data)
|
|
for i in range(0, total_items, BATCH_SIZE):
|
|
batch = successful_data[i : i + BATCH_SIZE]
|
|
batch_num = (i // BATCH_SIZE) + 1
|
|
batch_filename = os.path.join(
|
|
LOTES_FOLDER, f"projetos_lote_{batch_num:03d}.yml"
|
|
)
|
|
|
|
logging.info(
|
|
f"Gravando Lote {batch_num} ({len(batch)} itens) em {batch_filename}..."
|
|
)
|
|
save_to_yaml(batch, batch_filename)
|
|
|
|
logging.info("Gravação de lotes concluída.")
|
|
|
|
# Geração dos manifestos
|
|
try:
|
|
manifest_report = generate_manifests(SRC_MMPSEARCH)
|
|
# base_dir_instruments = "/nethome/jotachina/projetos/mmpSearch/mmp/instruments"
|
|
# manifest_instruments = find_audio_files(base_dir_instruments)
|
|
except Exception as e:
|
|
manifest_report = {"generated": [], "failed": [str(e)]}
|
|
|
|
duration = time.time() - start_time_global
|
|
logging.info("=" * 60)
|
|
logging.info(
|
|
f"FIM - Tempo Total: {str(timedelta(seconds=int(duration)))} | Sucessos: {len(successful_data)} | Falhas: {len(failed_files)}"
|
|
)
|
|
logging.info(f"Relatório de Auditoria: {audit_csv_path}")
|
|
|
|
if failed_files:
|
|
logging.info("--- Detalhe das Falhas ---")
|
|
for f in failed_files:
|
|
logging.error(f"{f['file']}: {f['error']}")
|
|
|
|
try:
|
|
check_dependencies(
|
|
os.path.join(METADATA_FOLDER, "all.json"),
|
|
os.path.join(METADATA_FOLDER, "samples-manifest.json"),
|
|
os.path.join(METADATA_FOLDER, "dependency_report.json"),
|
|
)
|
|
except Exception:
|
|
pass
|
|
|
|
|
|
if __name__ == "__main__":
|
|
main_parallel()
|