
Revista de Informática Teórica e Aplicada - RITA - ISSN 2175-2745
Vol. 27, Num. 04 (2020) 95-107

RESEARCH ARTICLE

Creating Digital Musical Instruments with libmosaic-sound
and Mosaicode
Criando Instrumentos Musicais Digitais com libmosaic-sound e Mosaicode

Luan Luiz Gonçalves1*, Flávio Luiz Schiavoni1

Abstract: Music has been influenced by digital technology over the last few decades. With the computer and the
Digital Musical Instruments, the musical composition could trespass the use of acoustic instruments demanding
to musicians and composers a sort of computer programming skills for the development of musical applications.
In order to simplify the development of musical applications, several tools and musical programming languages
arose bringing some facilities to lay-musicians on computer programming to use the computer to make music.
This work presents the development of a Visual Programming Language (VPL) to develop DMI applications in the
Mosaicode programming environment, simplifying sound design and making the creation of digital instruments
more accessible to digital artists. It is also presented the implementation of libmosaic-sound library, which
supported the VPL development, for the specific domain of Music Computing and DMI creation.
Keywords: Mosaicode — Digital Musical Instrument — Code generation — Library development

Resumo: A música tem sido influenciada pela tecnologia ao longo das últimas décadas. Com o computador e
os instrumentos musicais digitais, a composição musical pode superar a utilização de instrumentos acústicos
exigindo que músicos e compositores tenham habilidades em programação para desenvolver aplicações
musicais. De forma a simplificar o desenvolvimento de aplicações musicais, diversas ferramentas e linguagens
de programação musical surgiram trazendo alguma facilidade para músicos leigos em programação utilizar o
computador para fazer música. Este trabalho apresenta o desenvolvimento de uma linguagem de programação
visual para o desenvolvimento de aplicações de instrumentos musicais no ambiente de programação Mosaicode,
simplificando o projeto de novos sons e tornando a criação de instrumentos digitais mais acessível para artistas
digitais. Também é apresentado a implementação da biblioteca libmosaic-sound, que auxiliou o desenvolvimento
da linguagem de programação visual, para o domínio específico da computação musical e da criação de
instrumento.
Palavras-Chave: Mosaicode — Instrumentos musicais digitais — Geração de Código — Desenvolvimento de
biblioteca

1Computer Science Department – DCOMP, Federal University of São João del-Rei – UFSJ, Brazil
*Corresponding author: luanlg.cco@gmail.com
DOI: http://dx.doi.org/10.22456/2175-2745.104342 • Received: 15/06/2020 • Accepted: 13/10/2020
CC BY-NC-ND 4.0 - This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

1. Introduction

The current paper expands our previous work, titled “The
development of libmosaic-sound: a library for sound design
and an extension for the Mosaicode Programming Environ-
ment” [1], presented in the 17th Brazilian Symposium on
Computer Music realized in 2019. Previously, we had devel-
oped a library for sound design and an extension to develop
applications using it into the Mosaicode Programming En-
vironment. The present research added new features to our
library, expanding it to give to programmers a better support
on the creation of new Digital Musical Instruments (DMI).

In the present work, the following new features were

added to libmosaic-sound and to Mosaicode a set of:

• GUI components based on Gtk lib + Cairo to create
user interfaces of DMIs;

• MIDI components based on ALSA MIDI API to create
MIDI controllers;

• Joystick components to use Generic external controllers
based on the Linux Kernel lib;

• Basic components, like arithmetical operation and logi-
cal operations;

• OSC components, based on Lib Light OSC, to create
DMIs based on OSC messages.

libmosaic-sound

The development of DMIs is a kind of classic activity on
computer music field and can be summarized in the defini-
tion/implementation of the instrument input, like the physical
interface, the instrument output, like a synthesizer, and the
mapping between them. These steps are normally be done
using a programming language. The input interface normally
consists in physical and logical devices, requiring the imple-
mentation of communication between the devices and the
synthesizer. The instrument output is the user’s feedback, nor-
mally a sonic output of a synthesizer but also including visual
feedback or haptic feedback. The mapping between input and
output takes place through arithmetic, logical operations and
conversion of values. More about DMI will be presented in
Section 1.1.

The development of a DMI can be an activity exclusive to
programmers, since these three parts need to be programmed
in a computational system. Fortunately to non programmers
or lay-programmers, it is possible to develop a computer appli-
cation, like a DMI, using non-textual programming paradigms.
Visual Programming Languages (VPLs) are an example of
programming paradigm that allows programmers to develop
code using a two-dimensional notation and interacting with
the code from a graphical representation [2]. The use of di-
agrams to develop applications can make the development
easier and allow non-programmers or novice programmers
to develop and create software. Furthermore, diagrammatic
code abstraction can bring practicality in changing the code,
making it suitable for rapid prototyping [3], a feature that can
help even experienced programmers.

Software development and the creation of DMIs can also
be done using a Domain-Specific (Programming) Language
(DSL) [4]. DSLs are at a higher abstraction level than gen-
eral purpose programming languages because they have the
knowledge of the domain embedded in its structure. It makes
the process of developing applications in a certain domain eas-
ier because DSLs require more knowledge about the specific
domain than general programming knowledge [5]. Hence, the
potential advantages of DSLs include reduced maintenance
costs through re-use of developed resources and increased
portability, reliability, optimization and testability [6].

Another form to unleash the development of specific tools,
like DMIs, is to reuse code from a software library. Soft-
ware libraries, APIs (Application Programming Interface) and
frameworks can also assist the development of applications
for specific domains. Different from the DSLs, libraries can
be developed using general purpose programming languages
(GPLs) and can provide resources for developing applications
for specific domains. In this way, the implementation effort
can be reduced and the programmer will not have to learn a
DSL, focusing only in how to use the resource available in a
library wrote in GPL. This reuse of code helps the creation of
programs in certain domains, especially in Digital Art, if we
consider that many digital artists know how to code but did
not take courses that include formal knowledge in computer
programming.

Digital Art applications may require high data processing,
such as audio and image processing in real time. Thus, these
applications need to be well optimized and with a small no-
ticeable delay and jitter, features that are hard to reach with a
naive code and that, without it, can make an application to be
useless for artistic performance. When using a library, we are
reusing code that has already been tested and optimized by the
developers and used / tested by several users. Thus, we elimi-
nate the concern of optimizing the parts of reused code, also
allowing users to create optimized programs without having
this programming skills.

Merging the readiness of VPLs, the higher abstraction
of DSLs and the code reuse of libraries, we present the Mo-
saicode, a visual programming environment focused on the
development of applications for the specific domain of Digital
Art. The development of an application in the Mosaicode
environment, presented in Figure 2, is accomplished by the
implementation of a diagram, composed by blocks and con-
nections between them. The schematic of a diagram is used
to generate a source code in a specific programming language
using a code template for it. The tool also provides resources
for creating and editing components (blocks, ports, and code
template) to the environment and a set of components is called
an extension. Thus, by the creation of new extensions, the tool
can be extended to generate code for different programming
languages and specific domains – building VLPs for DSLs.
For this reason, it is possible to say that Mosaicode is not
restricted to generating applications only for the specific do-
mains of Digital Art, since it allows the creation of extensions
for any other specific domain.

This paper presents a set of extensions developed to Mo-
saicode focusing in the creation of DMIs. Our development
process is presented in Section 2 covering all the steps that
we did to create these extensions. We hope it can clarify the
development process and help future developers to contribute
to this project.

When connecting blocks of this extension, we create a
diagram that the Mosaicode can interpret and generate code
written in the C programming language, supported by the
libmosaic-sound library.

The libmosaic-sound library is also an outcome of this
project and it was developed with the aim of facilitating the
development of Digital Art application by reducing the ef-
fort required to implement it. Thus, the user can effortlessly
create audio applications in the C language using this library.
The library structure provides this ease-of-use programming
framework and made it easier to implement the blocks in
Mosaicode. This library is based on other libraries and it is
presented in Section 2.2.

1.1 Digital Musical Instruments
We can imagine DMIs as musical instruments made with / in
computers, programmed musical devices that give to the user
a possibility to change the way they are played, as well as
their sound characteristics and feedback. Thus, the common

R. Inform. Teór. Apl. (Online) • Porto Alegre • V. 27 • N. 4 • p.96/107 • 2020

libmosaic-sound

Sensors

Controls

Cameras

Another devices

Physical devices

GUI elements

Logical devices

User input

Audio source Audio FX Signal
arithmetics

Other inputs

Random

Date

Mapping

Output

Synthesizer Other feedback

Arithmetic operations Logical operations Conversions of
values

Visual feedback Haptic feedback

Time

Figure 1. Basic structure of DMI [7].

schematic of a DMI splits it into three layers of abstraction:
input, output and mapping. Figure 1 illustrates the basic
structure of a DMI separated in layers and using components
to present how it can implemented.

To control a DMI it is necessary to define an input, build-
ing an interaction interface between the instrument and the
musician’s gesture. This interface can be composed of phys-
ical and logical devices. Physical devices are any hardware
that can send data messages to the computer via a data link
and/or using a communication protocol. Sensors, cameras,
midi controllers, joysticks, keyboard and mouse, are examples
of physical devices that can be used to compose the instru-
ment’s input. Logical devices are GUI elements like buttons,
sliders, and text entry boxes. Other inputs, like the computer
clock provides date, time and random values, allowing the
addition of stochastic parameters to the DMIs, scheduling
events, delaying events and creating sequencers.

The DMI output defines the instrument’s feedback, re-
sponding to its input values. We have the sound of the in-
strument as the main feedback, produced by the instrument’s
synthesizer but a DMI can have other outputs. Synthesizers
are the voice of DMIs and can be implemented or inspired by

one or more classic audio synthesis algorithms such as Ampli-
tude Modulation, Frequency Modulation, Phase Modulation,
additive synthesis, subtractive synthesis, physical modeling
and others. Effects, filters and envelopes can be added to the
synthesizer’s sound to modify the instrument’s timbre. Be-
yond the audible feedback, visual and haptic feedbacks can
be added to the DMI’s output to help the user to understand
its behavior. Audio signal representations such as waveform,
audio spectrum and frequency bar char; and also the activation
of physical or virtual leds are examples of visual feedback.
Vibration motors and other actuators can be used as haptic
feedback.

There are several different forms to use input values to gen-
erate sound output. However, it is necessary to map the input
values to the output and it can be an interesting task. Firstly, it
can be necessary to adjust values sent by the input devices to
suit an output parameters, generating values in the same range
and with the same data type. A GUI component, like a slider,
can control the volume of an sound output, ranging from 0.0
to 1.0, but maybe an accelerometer, ranging from -32 to 32
can be used to perform the same task needing some conver-
sion to grant a correct range. Another example of mapping

R. Inform. Teór. Apl. (Online) • Porto Alegre • V. 27 • N. 4 • p.97/107 • 2020

libmosaic-sound

is the use of a MIDI controller to define the frequency that
the instrument will sound, if the output receives the frequency
value in hertz as a parameter, the MIDI message sent by the
controller must be converted to the corresponding frequency
value. More about mapping strategies may be found in [8].

1.2 Related Tools
The tools presented below are widely used by digital artists
and are considered to be related to this research. Some simi-
larities are the visual programming paradigm, the code gen-
eration and the resources to implement synthesizers, analysis
and audio processing, being useful for the development of
DMIs.

Processing1 is a programming language and an Integrated
Development Environment (IDE) developed by the MIT Me-
dia Lab[9]. The programming framework of Processing con-
tains abstractions for various operations with images and draw-
ings and allows rapid prototyping of animations in very few
lines of code. The purpose of the tool is to be used for teach-
ing programming and for graphic art development. From
programs made in Processing, called sketches, the IDE gen-
erates code to other programming languages, like Java or
Python, and runs the generated code.

Pure Data2 or simply Pd is a graphical real-time pro-
gramming environment for audio and video [10] application
development. A program in PD is called a patch and is done,
according to the author himself, through “boxes” connected
by “cords”. This environment is extensible through plugins,
called externals, and has several libraries that allow the inte-
gration of PD with sensors, Arduino, wiimote, OSC messages,
Joysticks and others. PD is an open source project and is
widely used by digital artists. The environment engine was
even packaged as a library, called libpd [11], which allows one
to use PD as a sound engine on other systems like cellphones
applications and games.

Max/MSP3 is also a real-time graphical programming
environment for audio and video [12]. Developed by Miller
Puckett, the creator of Pure Data, Max is currently maintained
and marketed by the Cycling 74 company. Different from the
other listed related tools, Max is neither open source or free
software.

EyesWeb4 is a visual programming environment focused
on real-time body motion processing and analysis [13]. Ac-
cording to the authors, this information from body motion
processing can be used to create and control sounds, mu-
sic, visual media, effects and external actuators. There is an
EyesWeb version, called EyesWeb XMI – for eXtended Multi-
modal Interaction – intended to improve the ability to process
and correlate data streams with a focus on multimodality [14].
Eyesweb is proprietary free and open source with its own
license for distribution.

1Available on <https://processing.org/>.
2Available on <http://www.puredata.info>.
3Available at <https://cycling74.com/products/max>
4Available on <http://www.infomus.org/>.

JythonMusic5 is a free and open source environment
based on Python for interactive musical experiences and ap-
plication development that supports computer-assisted com-
position. It uses Jython, enabling to work with Processing,
Max/MSP, PureData and other environments and languages.
It also gives access to Java API and Java based libraries to be
used in the code. The user can interact with external devices
such as MIDI, create graphical interfaces and also manipulate
images [15].

FAUST6 is a functional programming language for sound
synthesis and audio processing. A code developed in FAUST
can be translated to a wide range of non-domain specific
languages such as C++, C, JAVA, JavaScript, LLVM bit code,
and WebAssembly[16].

1.3 Mosaicode
Mosaicode7 is a visual programming environment that brings
the advantage of Visual programming languages, like Pure
Data and the flexibility of code generation, like FAUST and
Processing. Mosaicode was initially developed to generate
applications to the Computer Vision domain in C/C++ based
on the openCV framework. Since Arts are a research field
interested in image processing and computer vision, the en-
vironment took the attention of artists researching this field.
Gradually, new extensions have been developed to attend the
digital arts domain bringing together the areas needed to sup-
ply the demands of this domain including the processing and
synthesis of audio and images, input sensors and controllers,
computer vision, computer networks and others [17].

Actually, these are the current extensions being developed
to Mosaicode:

(i) mosaicode-javascript-webaudio: implements the na-
tives Web Audio API Nodes including the Script Pro-
cessor Node that allows the development of new sound
nodes for the Web Audio API. It also implements HTML
5 widgets that compose the generated applications GUI
[18]. Further than audio processing and synthesis with
Web Audio API, this extension also include other HTML
5 APIs like Web Midi, Gamepad API, Web Socket, We-
bRTC and others;

(ii) mosaicode-c-opencv: implements Computational Vi-
sion and Image Processing resources using openCV li-
brary for applications generated in the C++ language[19];

(iii) mosaicode-c-opengl: implements Computer Graphics
resources using the openGL library based on the C
programming language[19];

(iv) mosaicode-c-sound: with resources for analysis, ma-
nipulation and creation of sounds, making synthesis
and audio processing;

5Available on <http://jythonmusic.org>.
6Available on <https://faust.grame.fr/>.
7Available on https://alice.ufsj.edu.br.

R. Inform. Teór. Apl. (Online) • Porto Alegre • V. 27 • N. 4 • p.98/107 • 2020

https://processing.org/
http://www.puredata.info
https://cycling74.com/products/max
http://www.infomus.org/
http://jythonmusic.org
https://faust.grame.fr/

libmosaic-sound

Figure 2. Mosaicode – the Visual Programming Environment presented in this paper.

(v) mosaicode-c-gtk: supports the development of GUI
using GTK and C language;

2. The extension development

The development of the proposed extension to Mosaicode
took three stages, as depicted in Figure 3, i) a Startup process,
ii) the library development and iii) the extension development.

Startup

Programming
language
definition

Resources
definition

API definition

Library
implementation

Extension
implementation

Prototypes
implementation

Adds prototype
implementations

to the library

Defining the
library structure

i. ii. iii.

Identify code
parts

Blocks and ports
implementation

Code template
implementation

Figure 3. Flowchart of the development methodology of this
work splitted into three stages (i, iii and iii).

2.1 The startup process
The first stage of this work, the startup process, was divided
into three tasks: 1) choose the programming language for the
generated code; 2) choose the audio API to aid the develop-
ment and; 3) define the resources required for a VPL/DSL
that enable digital artists to develop audio applications for the
Music Computing domain and to work with sound design.

i.1 - Programming language decision
There was, in our previous work, a concern to choose a suit-
able programming language for the proposed project as well
as APIs that can simplify the development of a DMI, bringing
resources already implemented and code reuse, like accessing
audio, MIDI and controlling devices, offering good portabil-
ity, open software license and allowing the integration with
other APIs. The process of choosing the language and API
was done reading papers and source code of existing tools for
audio processing, looking for efficient APIs that could bring
up the basic resources to develop DMI applications.

The choice of the API also influenced the choice of the
programming language, and vice versa, since the compatibility
between both is fundamental to simplify the development of
systems. The language chosen should support an efficient
audio, MIDI and controller processing, otherwise the result of
the application will not be as expected [20].

Most part of the audio APIs available to audio applications
development are developed using the C language [21]. In ad-
dition, C is a powerful, flexible and efficient language that has
the necessary resources for the development of audio [22], so
we chose this programming language for the code generated
by our Mosaicode extension. Besides, using the C language

R. Inform. Teór. Apl. (Online) • Porto Alegre • V. 27 • N. 4 • p.99/107 • 2020

libmosaic-sound

could bring interoperability with others extensions present in
the environment. These choices were taken in previous work
and we chose to generate code to C language.

i.2 - API definition
From several APIs available to sound development, the Por-
tAudio API was chosen to simplify the development of the
framework in the musical context. This API was chosen to be
used in the audio development since it is a common choice to
access audio devices. This access allows one to write to the
audio buffer of the output devices and read the audio buffer of
the input devices. Being a cross-platform API, PortAudio al-
lows the implementation of audio streams using the operating
system audio APIs, making it possible to write programs for
Windows, Linux (OSS/ALSA) and Mac OS X [23].

Since PortAudio does not implement access to media
files, the libsoundfile API was also used to play and record
audio files. To process the audio signal from the devices,
we have implemented features that allow the development of
synthesizers and other audio applications.

For the development of DMIs, it was necessary to include
in the library and the extension resources that enable the cre-
ation of interfaces to control the parameters of the instruments.
Different kinds of feedback were also needed, in addition to
audible feedback. The GTK API supported the development
of GUI components, adding GUI inputs and visual output
for DMIs. GTK has several graphical components already
implemented and it is possible to use a canvas with Cairo to
create customized GUI elements. Beyond it, GTK is available
in several operating systems and it is the base of the Gnome
System.

To access control devices and support for MIDI and joy-
stick, two native lib from the Linux operating System was our
choice. The MIDI devices was implemented using the ALSA
API because it gives more functionalities when compared
with PortMidi, like the possibility to create virtual named
devices. Another possibility was to use RtMidi, another com-
mon option to access MIDI devices. However, RtMidi uses
C++ instead of C. The Joystick API used joystick.h, a Linux
kernel library that gives access to “uncommon” devices, like
USB joysticks and accelerometers.

To enable communication via computer networks we chose
to use OSC messages. OSC is a common form of communi-
cation to musical devices and it was implemented using the
light OSC library (liblo). Moreover, some basic operations
that would be useful to convert values, mathematical opera-
tions and more was created using ANSI C library like math.h
(libm).

These additional features were implemented as a module
in the libmosaic-soundlibrary, creating the modules: GUI,
MIDI, Joystick, and OSC.

i.3 - Resources definition
After defining the programming language and APIs, we car-
ried out a survey for a VPL/DSL resources that enable digital
artists to develop applications to the Music Computing domain

Table 1. APIs chosen to be used in the development
Modules API
Sound i/o Port Audio
Sound files libsoundfile
GUI GTK + Cairo
MIDI ALSA MIDI
OSC liblo (light OSC)
joystick joystick.h (kernel lib)
Base ANSI C

and work with sound design. A list of resources was made
based on existing tools, cited in Section 1.2, and other libraries
to develop system to the same domain, like the Gibberish [24]
library.

Gibberish has a collection of audio processing classes clas-
sified in the following categories: Oscillators, Effects, Filters,
Audio Synthesis, Mathematics and Miscellaneous [24]. We
have also investigated the native objects of Pure Data and this
tool has a list of objects organized in the following categories:
General, Time, Mathematics, MIDI and OSC, Miscellaneous,
Audio Mathematics, General Audio Manipulation, Audio Os-
cillators and Tables and Filters of Audio.

By meshing the categories investigated in both tools, the
resources were defined to be implemented in Mosaicode in
blocks form. For this work we selected some of the resources
to be implemented, disregarding resources that can be imple-
mented by combining others, such as audio synthesis. Table 2
presents the resources that have been implemented in the
libmosaic-sound library and in the Mosaicode in the blocks
form.

Basic GUI components were already available in Mo-
saicode by mosaicode-c-gtk extension. The extension had
some components like a button, entry, label and scale. The
spin and switch buttons were added, in addition to the mouse
click, mouse move and mouse release events. The best im-
plementation was to create GUI components specially for
DMI applications such as volume, VU bar, musical keyboard,
waveform and spectrogram. These components are placed
in between GUI components and audio components since
they have audio processing capability and may work as an
output to a sound source. They were added to the libmosaic-
sound library and the mosaicode-c-sound extension, reusing
the library code.

2.2 The Library implementation
The second stage was the implementation of the libmosaic-
sound library. The first task was to implement prototypes of
the resources defined in the Startup stage. Then, the code
of the prototypes were studied, to define the structure of the
library. Finally, the implemented prototypes were added to
the library.

ii.1 - Prototypes implementation
With the programming language, API, and resources defined
(in stage i), the next stage was to implement these resources

R. Inform. Teór. Apl. (Online) • Porto Alegre • V. 27 • N. 4 • p.100/107 • 2020

libmosaic-sound

Table 2. Resources implemented in libmosaic-sound and in Mosaicode, for generating audio applications. The asterisk symbol
(*) indicates that the resource was implemented in the previous work.

Modules Categories Resources/Blocks

Sound Audio Filter
Biquad filter* (All-pass, Bandpass, High-pass, Low-pass), High Shelving*, Low Shelving* and
Parametric Equalizer*

Sound Audio Math Addition*, Subtraction*, Division* and Multiplication*
MIDI MIDI MIDI In and MIDI Out
MIDI Conversion Float to MIDI, MIDI to Float, Frequency to MIDI Note and MIDI Note to Frequency
Sound Conversion RMS
Sound Envelope ADSR
Sound FX Delay
Sound General Audio Devices* and Channel Shooter Splitter*
Sound Event Metronome
GUI Event Mouse click, Mouse move and Mouse Release
GUI GUI Main window, Grid, Led, Waveform, Spectrogram, Volume and VU bar
GUI Form Button, Entry, Label, Scale, Spin and Switch

Sound Input Device Microphone
Joystick Input Device Joystick
Sound Output Record to audio files* and Speaker*
Sound Sound Sources Oscillators*, White Noise* and Playback audio files*
OSC OSC OSC In and OSC Out

by developing a library to work with sound design, focusing
on the development of DMIs. The idea at this stage was to
implement an example of each feature separately, instead of
starting the library implementation. Thus, it was possible to
study these prototypes and think of an appropriate structure
for the implementation of the library. It was also better to deal
with the difficulties of each implementation separately.

At first, only audio processing resources were imple-
mented, allowing the development of audio applications such
as audio synthesis. An audio processing software requires an
implementation concerned on the high data processing. An
audio application with a sample rate setting of 44100 implies
the processing of 44100 audio samples per second. If, at that
moment, the processing of the samples has a high computa-
tional cost, the result may not be as expected specially if the
computational power of the machine is not enough to perform
these tasks. With this amount of data to be processed, concern
with the time and space complexity of the algorithms was
essential.

In addition to audio processing, we implemented exam-
ples of GUI components (GTK API), communication with
MIDI devices (ALSA API) and Joystick (Joystick API) and
communication on computer networks (OSC protocol). The
integration of audio processing with GUI components also
required performance care. At that moment, we started to
have the cost of audio processing added to the cost of drawing
the competent GUI and updating it according to the processed
audio.

GUI components, such as VU bar and Waveform, graphi-
cally represent information about the audio signal. It is infea-
sible to update these visual feedback for each audio sample.
Thus, we allow the configuration of the update rate of the
components passing the parameter value in milliseconds. In
the implementation, to control the time, the amount of sample

that corresponds to the time was used. To control the feed-
back behavior of the graphic components a IIR filter – Infinite
Impulse Response was used.

In the implementation to support MIDI devices, the Ab-
stract Data Type (ADT) called MIDI was created, adding the
resources to send and receive MIDI messages. It is possi-
ble to send any type of MIDI messages using the send_event
function, setting the snd_seq_event_t8 type variable that must
be passed as a function parameter. In order to simplify the
sending of notes and controls, the send_note and send_control
functions were also implemented, receiving by parameter
primitive values that the message must contain.

To receive MIDI messages sent by physical or logical de-
vices, the user needs to implement a callback function and
pass it as a parameter in the mscsound_create_midi initial-
ization function of ADT MIDI. This callback will be called
by the ALSA API whenever the message event sent to the
associated MIDI device occurs, passing the send_event type
variable as a parameter. The MIDI message will be contained
within the event message and the user can define the destiny
of the message implementing the callback function.

Other features available by ADT MIDI are the functions
of converting the value of the MIDI note to the corresponding
frequency value and the reverse conversion. For converting
the MIDI note to the frequency, we created an array with 128
positions (indexes from 0 to 127), initializing the first position
with the frequency of 8.18 hz and using the Pythagorean
tuning ratio to generate the remaining values. Certainly, other
tuning methods should be implemented in the future.

An ADT to the joystick and one to the OSC messages was
also added. Following the MIDI implementation, we created
a running thread to wait for messages and a callback message

8Available on <https://www.alsa-project.org/>.

R. Inform. Teór. Apl. (Online) • Porto Alegre • V. 27 • N. 4 • p.101/107 • 2020

https://www.alsa-project.org/

libmosaic-sound

to receive incoming events. Thus, the user can define how to
use the messages just implementing the callback functions.

ii.2 - Defining the library structure
We developed a library to make these resources available and
easy to use, also thinking about a structure that is adequate
for the development of DMI applications, making it easier to
develop it through code reuse.

The prototypes implemented in the previous step were
important to define the structure of the library. Studying
the source code of each implemented resource and thinking
about how the programming in Mosaicode works (creating a
diagram composed of blocks and connections), we identified
a structure for the library that allows programming similar to
the visual programming of Mosaicode, but in a textual form.
For each resource, listed in Table 2, an ADT was implemented
following the same pattern, as shown below:

• input: input data to be processed. ADTs can have more
than one input;

• output: processed data. ADTs can have more than one
output;

• framesPerBuffer: buffer size to be processed in each
interaction;

• process: function that processes the input data and
stores it at the output if the ADT has output;

• create: function to create/initialize the ADT.

• others: each resource has its properties and values to
be stored for processing, so there are variables to store
these values.

The implementation also included a namespace defini-
tion using the mscsound_ prefix added in library functions,
types and definitions to ensure that there were no conflicts
with reserved words from other libraries. Another detail of
implementation is the audio processing without memory copy,
using pointers to reference the same memory address to all
processing ADTs. If one needs to process two outputs differ-
ently, it is possible to use the ADT called Channel Shooter
Splitter, which creates a copy of the output in another mem-
ory space. That way, there will only be memory copy only
spending when it is necessary and clearly defined. The details
of how to compile, install, and run the code are described on
README.md file, available on library’s repository at GitHub9.

Source Code at Listing 1 shows the ADT that provides
the implementation of data capture from a microphone (input
device):

Listing 1. ADT Definition mscsound_mic_t, la abstracting
the microphone implementation.
i f n d e f MSCSOUND_MIC_H

9Available on https://github.com/Alice-ArtsLab/libmosaic-
sound/blob/master/README.md.

d e f i n e MSCSOUND_MIC_H

t y p e d e f s t r u c t {
f l o a t ** o u t p u t 0 ;
i n t f r a m e s P e r B u f f e r ;
vo id (*process)(void *self, float *) ;

}mscsound_mic_ t ;

mscsound_mic_ t * mscsound _ c r e a t e _ m i c (
i n t f r a m e s P e r B u f f e r) ;

vo id mscsound _ m i c _ p r o c e s s () ;
e n d i f / * mic . h * /

ii.3 - Adds prototype implementations to the library
The implementation of an application using the libmosaic-
sound library depends on some functions that must be defined
by the developer and functions that must be called. These
functions are described below:

• mscsound_callback: a function called to process the
input values for every block. This function overrides
the PortAudio callback thread copying data read from
application’s ring buffer to the Portaudio audio output
buffer [25]. User must override this library function;

• mscsound_finished: function called by the library when
the callback function is done. User must also override
this function;

• mscsound_initialize: function that user must call to
initialize the audio application;

• mscsound_terminate: function that the user must call
to end up the audio application. This function finish the
library cleaning up memory allocation.

As an example of the libmosaic-sound library usage, Fig-
ure 4 presents the running flow of a code that capture the
audio with a microphone, store the audio in an audio file and
send the audio to the computer speaker.

mscsound_speaker_t
*speaker;

mscsound_mic_t *mic;

mscsound_record_t
*record;

Figure 4. The running flow of a simple audio application
developed with the ADTs of the libmosaic-sound library.

The ADTs also have some code patterns in the library def-
inition. Some code parts called declaration, execution, setup
and connections have been defined so one can use these code
parts to define the implementation of the audio application,
being that:

• declaration: code part to declare the ADTs used in the
code.

R. Inform. Teór. Apl. (Online) • Porto Alegre • V. 27 • N. 4 • p.102/107 • 2020

libmosaic-sound

• execution: code part to define the call order of the
process functions of each ADT declared in the code
part declaration. This part must be included within the
Mosaicode callback function;

• setup: code part to initialize ADTs variables, defining
their values and calling their respective create func-
tions;

• connections: part of the code to define the connections
between the ADTs. These connections defines the audio
processing chain associating the output of a ADT to the
input of another ADT.

For the identification of the code parts, several examples
have been created using all the library ADTs. Looking at
these examples, it was possible to identify the characteristics
of each code part listed above. The implementation code of
the libmosaic-sound library and the examples are available on
GitHub10, including new modules in addition to Sound: GUI,
MIDI, Joystick and OSC.

2.3 Extension implementation
The last stage (stage iii) consisted in the implementation of the
extension to develop a DMI within the Mosaicode program-
ming environment and using the library previously developed
to complete this task.

iii.1 - Identify code parts
To create the extension its needed to implement a code tem-
plate. The code template informs the code generator of the
Mosaicode how to generate source code. By setting the code
template, the Mosaicode generator can interpret the diagram
and generate the desired source code. Thus, the first step
of this stage was to observe in the library and examples de-
veloped in stage ii the code parts that are common in every
example, independently of the implementation, and the un-
usual parts that are different in every code example.

The code parts that are generated from the diagram are
those cited in the development of the libmosaic-sound library
in Section 2.2 – declaration, execution, setup and connec-
tions. The remaining code will always be the same in all
implementations, so it is fixed in the code template.

iii.2 - Code template implementation
The second step was to create a code template. This process
is summarized in the definition of the following attributes:

• name (string): code template name;

• language (string): code template language;

• description (string): code template description;

• command (string): command to compile the source
code;

• code_parts (string array): name of code parts;
10Available on https://github.com/Alice-ArtsLab/libmosaic-sound.

• files (dictionary): generated files – file name is the index
and the item is the file content.

In the code template files, wildcards were fixed indicating
to the generator the location of each part to replace it with
code, for example: $code[declaration]$ are replaced by code.
The implementation of the new modules in the library includes
new API dependencies, making it necessary to change the
code template, adding the necessary lines to be able to use the
APIs. In addition to including the APIs and initializing them,
it was added to the compile command the flags for linking.

iii.3 - Blocks and ports implementation
The third step was to create the input/output port types for
the blocks connections. Three types of ports have been im-
plemented for the extension: SOUND, MIDI and OSC. In the
implementation, the connection code is defined, establishing
how an output block port must be connected to an input block
port. The var_name attribute is also defined, which informs
the code generator a pattern to define the variable that stores
the port value. The Mosaicode automatically generates these
connections by interpreting the block diagram.

There are two forms to create a connection between ports.
The first one is simply assigning an output value, normally
stored into a variable, to an input value, also stored into a
variable. This form, that we call it “passive”, sends the value
from one block to the other. However, since the value is only
a parameter passing, it does not allow to take a decision and
perform some function when receiving a value from a block.

The other form, that we call it “active”, is based in the
Observer design pattern [26]. In this implementation, the
output ports are arrays and the input ports are functions. When
we connect the output port to an input port, the function
corresponding to the input port is added to the output port
array. In this way, the propagation of values is performed by
going through the array of the output port calling the functions
contained in each position. The functions of the input ports,
in addition to using the value received by parameter, passes
this value to every output port registered in the array. It is also
possible to take decisions in this function and perform some
actions when receiving a value.

The connection of the SOUND port is passive, where the
output port variable receives the memory address that stores
the value of the input port. The MIDI, OSC and primitive
ports (integer, float, char and string – implemented in the
mosaicode-c-base extension) implement an active port.

With the code template and the port created, the last step
was the implementation of the blocks for the Mosaicode. Each
developed block contains the code abstraction of a resource
defined in stage i. This strategy allows a reuse of code by
using the library developed in stage ii.

The GUI module of the library contains the grid compo-
nent that allows organizing the other GUI components. The
grid (GtkWidget) is one of the component organization op-
tions, offered by the GTK API. For the extension, we chose to
use the configuration of a fixed layout, where the user informs

R. Inform. Teór. Apl. (Online) • Porto Alegre • V. 27 • N. 4 • p.103/107 • 2020

libmosaic-sound

the x and y position that the component must be inserted in
the main window. As it is simpler to configure, we believe it
is more suited to the Mosaicode proposal to make implemen-
tations simpler. This fixed layout was recently adopted and
it was necessary to adapt existing extensions to that imple-
mentation. The disadvantages of this fixed layout is that the
components can present in an unorganized way, overlapping
other components and not adapting to the program window’s
resizing.

The implementation code of the mosaicode-c-sound ex-
tension – blocks, ports and code template – are available
on GitHub11. This extension uses ports implemented in the
mosaicode-c-base extensions, creating a dependency. In ad-
dition, the base extension implements common features in
programming languages, complementing the other extensions.
All Mosaicode extensions are available on GitHub12.

3. Results
The developed extension and library offer resources for work-
ing with audio processing, enabling audio applications such
as DMIs. In addition to sound processing, as presented in
Section 1.1, the development of a DMI also needs resources
to provide user control (input) and other feedback (output).
To supply this need for inputs and outputs, GUI components
were implemented using the GTK API and features for com-
municating with MIDI devices, using the ALSA MIDI API.
Support for the joystick device has also been added, imple-
menting with the Joystick API, and the OSC protocol has also
been added for network communication between devices and
applications. In this way, now it is possible to control audio
processing through graphical interfaces and physical devices
such as MIDI controllers and joysticks, including communica-
tion by computer network. This expansion of resources allows
a fully development of DMIs, easily allowing the exchange of
resources used in each layer of the instrument: Input, mapping
and output. The development can be done through textual
programming, using only the library, or visual programming,
using the extension to Mosaicode.

This work resulted in a library for DMI development
packed as an extension to the Mosaicode programming envi-
ronment defining a Visual Programming Language to musical
applications development. With this VPL, we simplified ap-
plication development for Computer Music domain, allowing
to generate audio applications and work with sound design by
dragging and connecting blocks. We hope it can increasing
the facility of digital artists to work with audio applications
development.

The developed VPL brings all the resources offered by
the libmosaic-sound library, including simple waveform sound
sources, enabling the implementation of audio synthesis, sound
effects and envelopes to the generation of more complex
sounds. It is possible to implement classic synthesizing ex-
amples like AM, FM, additive and subtractive synthesizers

11Available on https://github.com/Alice-ArtsLab/mosaicode-c-sound .
12Available on https://github.com/Alice-ArtsLab.

and implement other techniques of Computer Music, without
worrying about code syntax and commands, just dragging and
connecting blocks. The user also has the option to obtain the
source code of the application defined by the diagram, having
complete freedom to modify, study, distribute and use this
code.

Figure 5. Example of a Mosaicode diagram using the
mosaicode-c-sound extension.

Figure 5 shows a diagram as an example of using the
extension developed in this work. In this example we apply
the lowpass filter (Biquad) to an audio signal captured by a
microphone. The filter output is directed to the speaker and
recorded in an audio file. Another examples is available in the
extension repository, already available in this document in the
Section 2.3.

Comparing the generated code with implementations us-
ing PortAudio API, we can notice that the audio structure was
maintained. The difference is that function calls are made in-
stead of implementing the abstracted code in these functions.

The example in Figure 6 creates a DMI, adding and ADSR
envelope to the oscillator output. To control the instrument,
communication with a MIDI controller was added, which
triggers the envelope event when playing a note on the device.
Volume control (GUI), audible feedback and visual feedback
VU Bar and Waveform have also been added. Some blocks
were used during the mapping, the block to strip the MIDI
message, to convert the MIDI note value to the frequency
value, to convert the float value to integer and the block to
multiply the audio signal with the float value.

Figure 7 shows the GUI generated by the diagram in figure
6. The VU Bar and Waveform components draw their repre-
sentations of the audio signal the moment a key was pressed
on the MIDI devices. There is also the volume control, show-
ing the current value.

4. Conclusion
This work proposes the development of an extension for audio
application development within the Mosaicode visual pro-
gramming environment. This development allows the gen-
eration of source code from diagrams composed of blocks
and connections, making the sound design more accessible to
digital artists.

In the first stage of this project, a study has been done to
define a programming language and APIs to develop our li-
brary. It was also necessary to define resources for a DSL/VPL

R. Inform. Teór. Apl. (Online) • Porto Alegre • V. 27 • N. 4 • p.104/107 • 2020

libmosaic-sound

Figure 6. Example using SOUND, MIDI and GUI modules.

Figure 7. GUI generated from diagram of the example in the
Figure 7.

that would supply the needs of digital artists in the develop-
ment of applications for the Computer Music domain. In
addition, research of the Related tools, like Pure Data, and the
Gibberish library helped to define these resources.

In the second stage we discussed the development of the
libmosaic-sound library, which supported the implementation
of the mosaicode-c-sound extension for the Mosaicode and
allows the development of audio applications in an easier way.
The library structure is analogue the manipulation of Mo-
saicode blocks and connections, as if each ADT is a block and
each assignment between output and input was a connection.
This structure has drastically reduced the number of lines nec-
essary to develop an audio application compared to the direct
use of the PortAudio API. It happens mainly because this API
provides only the manipulation of input and output interfaces,
requiring the user to implement the processing of the data
read/written by the interfaces to generate the applications.

In the third stage we discussed the development of the mo-
saicode-c-sound extension to work with sound design in the
Mosaicode. This extension was based on the libmosaic-sound
library, in which each block uses resources developed and
present on the library. In this way, only library function calls
are made, making it easier to implement the blocks and gen-
erating a smaller source code. This implementation resulted
in a VPL for the Computer Music domain and, because it
was developed in Mosaicode , allows the generation of the
source code that can be studied and modified. In addition, it
contributes to Mosaicode with one more extension.

For implementation of the code template in Mosaicode,
first, we created several examples of codes using the libmosaic-

R. Inform. Teór. Apl. (Online) • Porto Alegre • V. 27 • N. 4 • p.105/107 • 2020

libmosaic-sound

sound library. These examples have been studied in order to
understand each code part and define which parts are fixed
in the code template and which parts are generated by the
extension blocks.

4.1 Limitations and Discussions
Until now, the library and the extension have gone through
some stages of development. We first implemented the pro-
totypes of resources for working with sound, which were
studied to define the structure of the library and were reused
in the implementation of the library. Then, we implemented
the Mosaicode extension using the library. With the need for
resources besides sound, for the creation of DMIs, we sepa-
rated the resources of the library by modules. To add the new
features, we followed the same procedure from creating exam-
ples. Then we implemented the resources in their respective
library modules, and then add them to the extension.

When inspecting the generated code, it is possible to no-
tice that, despite using only blocks of the sound module, the
generated code contains codes referring to the GUI module.
The same happens if we do not use the sound module, some
lines of unnecessary codes will be inserted, referring to the
sound module. To clean the generated code by adding only
the used modules, we will have to add a new code generation
feature in Mosaicode that includes code generation in the code
template. In this way, codes for specific modules will only be
added when the diagram contains blocks that depend on these
code snippets.

4.2 Future works
We intended to review the list of resources in order to expand
the library and the extension for audio application and improve
the library usability. An example of this would be the use of
macros to allow calling functions from ADTs without having
to pass the variable by parameter, so the user will just type
<variable name>.<function name>() instead of <variable
name>.<function name>(<variable name>).

To create the library documentation, the Doxygen13 tool
will be used to generate the documentation from the source
code. The possibility of generating the documentation for the
Mosaicode extensions will be studied, also from the source
code.

It is also intended to link this project to other projects of
the Mosaicode development team. There are several works
in progress implementing extensions to Digital Image Pro-
cessing, Computer Vision, Artificial Intelligence, Computer
Networking and Virtual Reality domains. The intention is to
connect all these extensions in the environment, offering re-
sources to generate more complex applications for the specific
domains of digital art.

Acknowledgements
Authors would like to thanks to all ALICE members that
made this research and development possible. Also would

13Available on <https://www.doxygen.nl/>.

like to thank the support of the funding agencies CNPq, (Grant
Number 151975/2019-1) and FAPEMIG.

Author contributions
Luan Luiz Gonçalves developed the library and the extension
during his undergrad in Computer Science and now is working
on it in his Master degree, both supervised by Flávio Luiz
Schiavoni. Both authors use to code, write and play together.

References
[1] GONÇALVES, L.; SCHIAVONI, F. The development
of libmosaic-sound: a library for sound design and an exten-
sion for the mosaicode programming environment. In: SCHI-
AVONI, F. et al. (Ed.). Proceedings of the 17th Brazilian Sym-
posium on Computer Music. São João del-Rei - MG - Brazil:
Sociedade Brasileira de Computação, 2019. p. 99–105.

[2] HAEBERLI, P. E. Conman: A visual programming lan-
guage for interactive graphics. SIGGRAPH Comput. Graph.,
ACM, 1988.

[3] HILS, D. D. Visual languages and computing survey:
Data flow visual programming languages. Journal of Visual
Languages & Computing, Elsevier, 1992.

[4] GRONBACK, R. C. Eclipse Modeling Project: A
Domain-Specific Language (DSL) Toolkit. [S.l.]: Addison-
Wesley, 2009.

[5] MERNIK, M.; HEERING, J.; SLOANE, A. M. When
and how to develop domain-specific languages. ACM comput-
ing surveys (CSUR), ACM, 2005.

[6] DEURSEN, A. V.; KLINT, P. Domain-specific language
design requires feature descriptions. CIT. Journal of comput-
ing and information technology, SRCE-Sveučilišni računski
centar, 2002.

[7] GOMES, A. L. N. et al. Prototyping web instruments
with mosaicode. In: Proceedings of the 17th Brazilian Sym-
posium on Computer Music. São Jão del-Rei - MG - Brazil:
[s.n.], 2019. p. 114–120.

[8] HUNT, A.; WANDERLEY, M. M.; KIRK, R. Towards a
model for instrumental mapping in expert musical interaction.
In: CITESEER. ICMC. [S.l.], 2000.

[9] REAS, C.; FRY, B. Processing: a programming hand-
book for visual designers and artists. [S.l.]: Mit Press, 2007.

[10] PUCKETTE, M. S. et al. Pure data. In: ICMC. [S.l.: s.n.],
1997.

[11] BRINKMANN, P. et al. Embedding pure data with libpd.
In: CITESEER. Proceedings of the Pure Data Convention.
[S.l.], 2011.

[12] WRIGHT, M. et al. Supporting the sound description
interchange format in the max/msp environment. In: ICMC.
[S.l.: s.n.], 1999.

R. Inform. Teór. Apl. (Online) • Porto Alegre • V. 27 • N. 4 • p.106/107 • 2020

https://www.doxygen.nl/

libmosaic-sound

[13] CAMURRI, A. et al. Eyesweb: Toward gesture and affect
recognition in interactive dance and music systems. Computer
Music Journal, MIT Press, 2000.

[14] CAMURRI, A. et al. Developing multimodal interactive
systems with eyesweb xmi. In: Proceedings of the 7th Inter-
national Conference on New Interfaces for Musical Expres-
sion. New York, NY, USA: ACM, 2007. (NIME ’07), p. 305–
308. Disponível em: <http://doi.acm.org/10.1145/1279740.
1279806>.

[15] MANARIS, B.; STEVENS, B.; BROWN, A. R. Jython-
music: An environment for teaching algorithmic music com-
position, dynamic coding and musical performativity. Journal
of Music, Technology & Education, Intellect, v. 9, n. 1, p.
33–56, 2016.

[16] ORLAREY, Y.; FOBER, D.; LETZ, S. Faust: an effi-
cient functional approach to dsp programming. New Compu-
tational Paradigms for Computer Music, Editions Delatour,
Paris, France, v. 290, p. 14, 2009.

[17] SCHIAVONI, F. L.; GONÇALVES, L. L. From virtual
reality to digital arts with mosaicode. In: 2017 19th Sympo-
sium on Virtual and Augmented Reality (SVR). Curitiba - PR -
Brazil: [s.n.], 2017. p. 200–206.

[18] SCHIAVONI, F. L.; GONÇALVES, L. L.; GOMES, A.
L. N. Web audio application development with mosaicode. In:
Proceedings of the 16th Brazilian Symposium on Computer
Music. São Paulo - SP - Brazil: [s.n.], 2017. p. 107–114.

[19] GOMES, A. L. N.; RESENDE, F. R.; SCHIAVONI, F. L.
Desenvolvimento de extensões de processamento e síntese de
imagens para a ferramenta mosaicode. In: Proceedings of the
CONFERENCE ON GRAPHICS, PATTERNS AND IMAGES,
31 (SIBGRAPI). Foz do Iguaçu - PR - Brazil: [s.n.], 2018.
p. 1–4.

[20] JIANG, Z.; ALLRED, R.; HOCHSCHILD, J. Multi-rate
digital filter for audio sample-rate conversion. [S.l.]: Google
Patents, 2002.

[21] SCHIAVONI, F. L.; GOULART, A. J. H.; QUEIROZ,
M. Apis para o desenvolvimento de aplicações de áudio. Sem-
inário Música Ciência Tecnologia, 2012.

[22] ANDERSEN, L. O. Program analysis and specializa-
tion for the C programming language. Tese (Doutorado) —
University of Cophenhagen, 1994.

[23] NELSON, M.; THOM, B. A survey of real-time midi
performance. In: NATIONAL UNIVERSITY OF SINGA-
PORE. Proceedings of the 2004 conference on New interfaces
for musical expression. [S.l.], 2004. p. 35–38.

[24] ROBERTS, C.; WAKEFIELD, G.; WRIGHT, M. The
web browser as synthesizer and interface. In: CITESEER.
NIME. [S.l.], 2013.

[25] SOSNICK, M. H.; HSU, W. T. Implementing a finite
difference-based real-time sound synthesizer using gpus. In:
NIME. [S.l.: s.n.], 2011. p. 264–267.

[26] NAUMOVICH, G. Using the observer design pattern
for implementation of data flow analyses. ACM SIGSOFT
Software Engineering Notes, ACM New York, NY, USA,
v. 28, n. 1, p. 61–68, 2002.

R. Inform. Teór. Apl. (Online) • Porto Alegre • V. 27 • N. 4 • p.107/107 • 2020

http://doi.acm.org/10.1145/1279740.1279806
http://doi.acm.org/10.1145/1279740.1279806

	Introduction
	Digital Musical Instruments
	Related Tools
	Mosaicode

	The extension development
	The startup process
	The Library implementation
	Extension implementation

	Results
	Conclusion
	Limitations and Discussions
	Future works

	References

