
Network distribution in music applications with Medusa

Flávio Luiz SCHIAVONI and Marcelo QUEIROZ
Computer Science Department

University of São Paulo
São Paulo

Brazil,
{fls, mqz}@ime.usp.br

Abstract

This paper introduces an extension of Medusa, a dis-
tributed music environment, that allows an easy use of
network music communication in common music ap-
plications. Medusa was firstly developed as a Jack
application and now it is being ported to other au-
dio APIs as an attempt to make network music ex-
perimentation more widely accessible. The APIs cho-
sen were LADSPA, LV2 and Pure Data (external).
This new project approach required a complete review
of the original Medusa architecture, which consisted
of a monolithic implementation. As a result of the
new modular development, some possibilities of us-
ing networked audio streaming via Medusa plugins in
well-known audio processing environments will be pre-
sented and commented on.

Keywords

Network Music, Pure Data, LADSPA, LV2, Medusa.

1 Introduction

Ever since the availability of network and In-
ternet connections became an undisputed fact,
collaborative and cooperative music tools have
been developed. The desire of using realtime au-
dio streaming in live musical performances in-
spired the creation of various tools focused on
distributed performance, where synchronous mu-
sic communication is a priority. Some related
network music tools which address the prob-
lem of synchronous music communication be-
tween networked computers are NetJack [Carôt
et al., 2009], SoundJack [Carôt et al., 2006],
JackTrip [Cáceres and Chafe, 2009b; Cáceres
and Chafe, 2009a], llcon [Fischer, 2006] and
LDAS [Sæbø and Svensson, 2006].

The success cases of network music perfor-
mance concerts could give the wrong impression
that the only use for network music is distributed

performance, but several other problems in com-
puter music can take advantage of or benefit from
network music distribution. For instance, record-
ings can be made using a pool of networked com-
puters, a resource which might be seen as a scal-
able distributed sound card; music spatialization
could be done using a mesh network topology;
digital signal processing power can be vastly im-
proved using clusters of computers; and musi-
cal composition may explore fresh new grounds
by viewing computer networks as nonstandard
acoustical environments for performance and lis-
tening.

There are at least two requirements for all these
scenarios to be fully explorable by potentially in-
terested users, which are often musicians or afi-
cionados and usually nonprogrammers; first, flex-
ible audio network tools must be made available,
and second, easy integration with popular mu-
sic/sound processing applications must be guar-
anteed. Despite the fact that most high-level
linux music applications nowadays run over Jack
and ALSA, we see that time and again end users
can’t deal with this audio infrastructure lying
below the application they are running. Also,
the lack of automated setup and graphical user
interfaces shun common users from many exist-
ing tools, like the network music tools mentioned
above.

The work presented in this paper is part
of the investigation behind the development of
Medusa [Schiavoni et al., 2011], a distributed au-
dio environment. Medusa is a FLOSS project
which is primarily focused on usability and trans-
parency, as means to making network music con-
nections easier for end users. The first implemen-
tation of Medusa, presented in LAC 2011, was de-
veloped in C++ with Qt GUI and Jack as sound



API. The Jack API was extended with a series of
network functionalities, such as add/remove re-
mote ports and remote control of the Jack Trans-
port functionality.

Recently, the development of Medusa has been
strongly guided by the attempt to deal with the
two aforementioned requirements, namely flexibil-
ity and integrability. These goals may be reached
by extending regular sound processing applica-
tions, such as Pure Data, Rosegarden or Ardour,
allowing them to function as network music tools.
The very basic idea is trying to reach end users
wherever they already are.

Most music applications can be extended by
plugins: Pure Data can be extended by the cre-
ation of C externals (which might be viewed as a
plugin), whereas digital audio workspaces such as
Ardour, Rosegarden, Qtractor and Traverso can
be extended by LADSPA, VST and LV2 plugins.
In this paper we will explore the possibility of
developing Medusa network music plugins using
three popular audio APIs: LADSPA, LV2 and
Pure Data API (via C externals). It is worth
mentioning that these APIs are all open-source,
developed in C and widely used in Linux music
environments.

A reimplementation of Medusa has been re-
quired in order to grant code reuse in the im-
plementation of these plugins, and also for easy
maintenance of the source code. All source code
of the Medusa project, including Medusa plug-
ins, are freely available in the project site1. This
reimplementation of Medusa and the proposed ar-
chitecture are presented in section 2; section 3
discusses the chosen audio APIs and presents the
developed plugins, and section 4 brings some con-
clusions and a discussion of future works.

2 Medusa

Although some promising preliminary results
had been achieved with the first version of
Medusa [Schiavoni et al., 2011], the original
monolithic implementation raised several diffi-
culties in the implementation of the proposed
Medusa plugins, which eventually triggered a
fundamental architectural change in the project.
First, the implementation language was changed
from C++ to ANSI C, which is more compatible

1http://sourceforge.net/projects/medusa-audionet/

with the chosen sound APIs. Second, the mono-
lithic structure has been changed to the devel-
opment of a core Medusa library (libmedusa.so),
comprising control and network functions, which
could be re-used by each new plugin implemen-
tation. Third, graphical user interfaces, text-
based interfaces and plugins now occupy a sep-
arate layer, that uses the core Medusa library as
an API on its own.

Figure 1: Medusa Jack implementation with Qt
GUI

The new Medusa architecture is divided in
three layers: Sound, Control and Network. The
Control and Network layers are implemented as a
unique library and are used by all Medusa imple-
mentations. The Sound layer corresponds to spe-
cific applications, like the proposed plugins, that
are built using each plugin API and the Medusa
library. This architecture facilitates code mainte-
nance and bug correction.

Figure 2: Architectural view of the implementa-
tion



2.1 Network layer

The network layer is responsible for managing
connections between network clients and servers.
This layer’s implementation was made based on
a fixed set of network transport protocols, which
are normally provided as part of the operating
system kernel, since its development and deploy-
ment requires superuser privileges. Medusa cur-
rently allows the user to choose among 4 transport
protocols: UDP, TCP, SCTP e DCCP:

UDP [Postel, 1980]: User Datagram Protocol is
the classical unreliable (but faster) transport
protocol.

TCP [Padlipsky, 1982]: Transmission Control
Protocol is a reliable transport protocol,
which ensures absence of packet losses.

SCTP [Ong and Yoakum, 2002]: Stream Con-
trol Transmission Protocol is a connection-
oriented transport protocol that provides a
reliable full-duplex association. This proto-
col was not originally meant as a replacement
for TCP, but was developed for carrying voice
over IP (VoIP).

DCCP [Kohler et al., 2006; Floyd et al.,
2006]: Datagram Congestion Control Pro-
tocol is a transport protocol that combines
TCP-friendly congestion control with unre-
liable datagram semantics for applications
that transfer fairly large amounts of data [Lai
and Kohler, 2005].

This multi-protocol network communication
layer is intended to offer alternatives for users that
may need different specific features in data trans-
fer according to application context. For instance,
an interactive musical performance with strong
rhythmic interactions may require the smallest
possible latency while tolerating audio glitches
due to packet losses, and a remote recording ses-
sion may tolerate high latency and jitter, but still
require that every packet be delivered. With a few
alternatives available, the user may choose which
protocol is more appropriate to its own musical
use.

2.2 Control layer

The next layer in the Medusa API is the Con-
trol layer. The Control layer essentially creates

senders and receivers and provides them to the
Sound layer. Instead of requiring that all pro-
tocols in the Network layer to have full-duplex
communication, the Control layer always sepa-
rates the roles of sending and receiving network
data.

Figure 3: Sender / Receiver communication

In order to create a sender it is necessary to in-
form the network protocol, the network port and
the number of channels that will be sent. The
sender creates the network server and one ring
buffer for each channel, and provides functions
for the sound API to have easy access to these
buffers. Each ring buffer receives sound content
from applications (usually in DSP chunks), out of
which the sender prepares network chunks (usu-
ally of a different size) for the Network Layer.

The receiver is created in a way similar to the
sender, but besides the basic parameters the cor-
responding server IP address is also required. The
receiver creates a network client and the required
number of ring buffers (one per channel). Un-
like the sender, the ring buffer of the receiver will
be fed by a network client and consumed by the
sound API.

2.3 Sound layer

The outermost Medusa layer is the Sound layer,
which deals not only with audio streams but also
with MIDI streams. The Sound layer lies be-
tween the Medusa API and several sound applica-
tion APIs, and represents a collection of Medusa
front-ends or interfaces, since each integration of
Medusa with a particular sound application may
have its own user interface, defined by each sound
application API.

The integration of Sound and Network layers
uses the Control layer through its sender / re-
ceiver plugins. Sender and receiver roles defined
by the Control layer are converted into Sound
layer plugins that simply exchange audio streams
between machines.

Each plugin has a host application and a partic-
ular way to communicate with it. The API defines
how a plugin is initialized, how it processes data
and how it is presented. Each plugin implemen-



tation generates an independent software pack-
age that can be individually used and distributed.
The separation of these implementations avoids
the mixing of different plugin libraries, which is
better for code maintenance, chasing bugs and so
on.

3 Implementations

3.1 LADSPA

LADSPA [Furse, 2000] stands for “Linux Audio
Developer Simple Plugin API”, and it is the most
common audio plugin API for Linux applications.
Many Linux programs, such as Audacity, Ardour,
Rosegarden, QTractor and Jack Rack, support
LADSPA plugins. The LADSPA API is captured
within a header file and is very easy to use. Some
examples are provided with an SDK and there is a
lot of open source code with great documentation
available.

Figure 4: Medusa LADSPA implementation

Figure 4 presents Medusa LADSPA sender and
receiver interfaces. The controls of a LADSPA
plugin are represented exclusively by 32 bit float-
ing point numbers, and it was awkward to
use these to represent IP addresses. LADSPA
GUIs are defined in RDF files that cannot be
changed on-the-fly, which makes them very cum-
bersome as interfaces for network audio connec-
tions. LADSPA doesn’t support MIDI and the

documentation suggests the use of Rosegarden
DSSI to deal with it.

3.2 LV2

LV2 (LADSPA version 2) [Steve Harris, 2008] is
acknowledged as the official LADSPA successor.
An LV2 plugin is a bundle that includes the plugin
itself, an RDF descriptor in Turtle and any other
resource needed. The LV2 bundle may include a
GTK GUI, thus offering developers a way to cre-
ate better user interfaces. As LADSPA, LV2 is an
easy-to-use library, and plenty of documentation
and examples are provided by the developers.

Figure 5: Medusa LV2 implementation

The possibility of creating GTK interfaces al-
lowed a more natural integration of Medusa as an
LV2 plugin. The IP mask entry allows easy input
for the user, and on-the-fly changes to the inter-
face may be used by Medusa in the future to allow
for finding users and sound resources and keeping
this information up-to-date on the interface.

3.3 Pure Data external

Pure Data [Puckette, 1996] (aka Pd) is a largely
used realtime programming environment for au-
dio, video, and graphical processing, which can
be extended by the use of externals written in
C/C++ language [Zmölnig, 2001]. Pure Data
does have some network externals available, but
none offers all transport protocols provided by
Medusa. A Pd external may also be implemented
with a tcl/tk GUI, which can be useful to improve
usability and also to implement Medusa service
control in the future. In addition, Pd offers a good
environment to measure latency, packet loss and
jitter in Medusa Network layer implementation.



Figure 6: Medusa Pure Data external implemen-
tation

The Medusa Pd external implementation is ac-
tually a collection of externals (a library) that
includes the sender and receiver objects (see fig-
ure 6) and a network meter to measure latency
and packet loss. Some examples of use were also
developed and are available on the project web-
site.

4 Conclusions and Future Works

The possibility of exchanging sound data between
applications using the Jack sound server, for in-
stance, has brought new perspectives in audio
software development and usage. Extending this
possibility to allow for network data exchange
from within popular user applications may fa-
cilitate the emergence of new ways to compose,
record or play music. It may be early to con-
clude that network plugins for audio software will
really expand the musical use of computer net-
works, but it is not early to observe in users and
musicians new expectations about what might be
done in network music, and also the desire to try
out new ways to do old things, maybe more easily
and more transparently than before.

The effort that went into changing Medusa ar-
chitecture and reimplementeing it is totally justi-
fied, in the sense that now the effort of implement-
ing other network music plugins (i.e. Medusa plu-
gins for other sound applications) involve a lot of
code reuse and thus have been made much lighter.

On the other hand, the first version of Medusa
had an additional structure called Control Ser-
vice, which was responsible for helping users to
connect to network music resources in a transpar-
ent way, in other words, without having to specify
IP, network ports or audio configuration, using
broadcast messages to publish networked audio
resources.

With that in mind, the level of usability orig-
inally pretended by this project will only be
reached when Medusa’s control service is imple-
mented in the presented Medusa plugins, which is
the very next step in our work. This control ser-
vice is going to be responsible for improving trans-
parency and usability, by including a discovery
service, and a name server to publish networked
music resources, thus allowing users to refer to
other users and audio streams, instead of IP ad-
dresses and network ports. Probably the Medusa
LADSPA plugin will have to be abandoned at this
point because the control service is impossible to
implement without on-the-fly GUI modification
(although the current version of the plugin, with-
out control service, should be kept).

Up to this point the plugin development has
focused on audio streaming, but some other fea-
tures must soon be addressed, such as treating
MIDI streams and designing better GUIs. There
are also other sound APIs that are been inves-
tigated and maybe soon will be incorporated in
Medusa Sound layer.

Acknowledgements

Thanks to uncountable developers of LADSPA,
LV2 and Pure Data externals and their amazing
open source code. Without their anonymous help
this project would not have been possible.

Thanks also go to André Jucovsky Bianchi,
Beraldo Leal, Santiago Davila, Antônio Goulart,
Giuliano Obici, Danilo Leite and the Computer
Music Group of IME/USP for their interest, feed-
back and support.

This work has been supported by the fund-
ing agencies CNPq (grant 141730/2010-2) and
FAPESP - São Paulo Research Foundation (grant
2008/08623-8).

References

Juan-Pablo Cáceres and Chris Chafe. 2009a.
Jacktrip: Under the hood of an engine for net-
work audio. In Proceedings of International
Computer Music Conference, page 509–512,
San Francisco, California: International Com-
puter Music Association.

Juan-Pablo Cáceres and Chris Chafe. 2009b.
Jacktrip/Soundwire meets server farm. In In
Proceedings of the SMC 2009 - 6th Sound



and Music Computing Conference, pages 95–
98, Porto, Portugal.

A. Carôt, U. Kramer, and G. Schuller. 2006.
Network music performance (NMP) in narrow
band networks. In Proceedings of the 120th AES
Convention, Paris, France.

A. Carôt, T. Hohn, and C. Werner. 2009.
Netjack–remote music collaboration with elec-
tronic sequencers on the internet. In In Pro-
ceedings of the Linux Audio Conference, page
118, Parma, Italy.

Volker Fischer. 2006. Internet jam session soft-
ware. http://llcon.sourceforge.net/.

S. Floyd, E. Kohler, and J. Padhye. 2006. Pro-
file for Datagram Congestion Control Proto-
col (DCCP) Congestion Control ID 3: TCP-
Friendly Rate Control (TFRC). RFC 4342
(Proposed Standard), March. Updated by RFC
5348.

Richard Furse. 2000. Linux audio devel-
oper’s simple plugin api (ladspa). http://www.
ladspa.org/.

E. Kohler, M. Handley, and S. Floyd.
2006. Datagram Congestion Control Proto-
col (DCCP). RFC 4340 (Proposed Standard),
March. Updated by RFCs 5595, 5596.

Junwen Lai and Eddie Kohler. 2005. A
congestion-controlled unreliable datagram
api. http://www.icir.org/kohler/dccp/ nsdiab-
stract.pdf.

L. Ong and J. Yoakum. 2002. An Introduction
to the Stream Control Transmission Protocol
(SCTP). RFC 3286 (Informational), May.

M.A. Padlipsky. 1982. TCP-on-a-LAN. RFC
872, September.

J. Postel. 1980. User Datagram Protocol. RFC
768 (Standard), August.

Miller Puckette. 1996. Pure data: another inte-
grated computer music environment. In in Pro-
ceedings, International Computer Music Con-
ference, pages 37–41.

Asbjørn Sæbø and U. Peter Svensson. 2006. A
low-latency full-duplex audio over IP streamer.
In Proceedings of the Linux Audio Conference,
pages 25–31, Karlsruhe, Germany.

Flávio Luiz Schiavoni, Marcelo Queiroz, and
Fernando Iazzetta. 2011. Medusa - a dis-
tributed sound environment. In Proceedings of
the Linux Audio Conference, pages 149–156,
Maynooth, Ireland.

David Robillard Steve Harris. 2008. Lv2 track.
http://lv2plug.in/trac/.

Johannes M Zmölnig. 2001. Howto write an
external for puredata. http://pdstatic.iem.
at/externals-HOWTO/.


